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We present an approximation scheme to solve the nonperturbative renormalization group equations and
obtain the full momentum dependence of the n-point functions. It is based on an iterative procedure where, in
a first step, an initial ansatz for the n-point functions is constructed by solving approximate flow equations
derived from well motivated approximations. These approximations exploit the derivative expansion and the
decoupling of high momentum modes. The method is applied to the O�N� model. In leading order, the
self-energy is already accurate both in the perturbative and the scaling regimes. A stringent test is provided by
the calculation of the shift �Tc in the transition temperature of the weakly repulsive Bose gas, a quantity which
is particularly sensitive to all momentum scales. The leading order result is in agreement with lattice calcula-
tions, albeit with a theoretical uncertainty of about 25%.
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I. INTRODUCTION

The need for reliable and efficient nonperturbative calcu-
lation methods is felt, in various forms, in nearly all fields of
physics: in nuclear and particle physics �to deal with the
infrared sector of quantum chromodynamics and the associ-
ated phenomena of color confinement and chiral symmetry
breaking�, in condensed matter and statistical physics of sys-
tems in or out of equilibrium �phase transitions and critical
phenomena, disorder systems, strongly correlated electrons�,
to quote but just a few general examples. In many of these
cases, the absence of a small parameter prevents one to build
a solution in terms of a systematic expansion. In order to
treat such problems, what one needs is a nonperturbative
method that allows the calculation of correlation functions
for arbitrary values of the external momenta, from which
most physical quantities can be deduced.

Among the nonperturbative methods that have been de-
veloped along the years, the nonperturbative renormalization
group �NPRG� �1–5� stands out as a very promising tool,
suggesting new approximation schemes which are not easily
formulated in other, more conventional, approaches in field
theory or many body physics. The NPRG has been applied
successfully to a variety of physical problems, in condensed
matter, particle or nuclear physics �for reviews, see, e.g.,
Refs. �6–8��. In most of these problems, however, the focus
is on long wavelength modes and the solution of the NPRG
equations involves generally a derivative expansion which
only allows for the determination of the n-point functions
and their derivatives at small external momenta �vanishing
momenta in the case of critical phenomena�. In many situa-
tions, this is not enough: a full knowledge of the momentum
dependence of the correlation functions is needed to calcu-

late the quantities of physical interest �e.g., to get the spec-
trum of excitations, the shape of the Fermi surface, the scat-
tering matrix, etc.�.

The NPRG presents itself as an infinite hierarchy of equa-
tions relating sequentially the various n-point functions. To
our knowledge, most efforts to solve this hierachy, aside
from the derivative expansion alluded to above, have been
based on various forms of the early proposal by Weinberg
�9�, that is, they involve some truncation of the infinite tower
of flow equations for the n-point functions, ignoring higher
order vertices, or possibly using various Ansätze for some of
them �10,11�. This leads to approximations similar to those
used when solving the hierarchy of Schwinger-Dyson equa-
tions �12�. However, despite the fact that very encouraging
results have been obtained this approximation scheme pre-
sents convergence difficulties �13�.

The goal of this paper is then to present a method for
solving the NPRG equations that keeps the contribution of
all the vertices present in the flow equations. This is achieved
by exploiting specific properties of the NPRG. The method
allows one to get, in a relatively simple way, the full momen-
tum dependence of the n-point functions. It involves itera-
tions that start with an initial guess for the n-point functions.
That initial guess is then injected in the flow equations which
are integrated in order to obtain a leading order expression
for the n-point functions. And so on. Clearly, each new itera-
tion involves more n-point functions, and the scheme may
become rapidly prohibitively complicated. It is therefore cru-
cial that the starting point of the iterations, that is, the initial
Ansatz for the n-point functions, be as close as possible to
the exact solution, in order to get a good approximation with
a minimum number of iterations. The construction of this
initial Ansatz is therefore the central part of the method.

To derive this initial Ansatz we shall first simplify the
flow equations using well motivated approximations. We
shall exploit a modified derivative expansion in its leading
order and the decoupling of high momentum modes in the
flow equations in order to simplify the momentum depen-
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dence of the vertices that govern the flow. The resulting ap-
proximate equations are then solved explicitly.

The particular class of problems that we are concerned
with can be formulated in terms of a field theory, and as a
generic case, we shall consider here a scalar �4 theory in d
dimension with O�N� symmetry:

S =� ddx�1

2
����x��2 +

1

2
r�2�x� +

u

4!
��2�x��2� , �1�

where the field ��x� has N real components �i�x�, with i
=1, . . . ,N. We emphasize, however, that most of the argu-
ments presented in this paper have a wider range of applica-
bility.

In this paper, we shall apply the method to the calculation
of the self-energy at criticality and at zero external field, in
leading order and in d=3. This involves getting the initial
Ansatz for both the propagator and the four-point function.
Constructing this initial Ansatz is the main task carried out in
the present paper. It is presented in Sec. III, together with a
more detailed description of the approximation scheme.
First, in Sec. II, we review basic features of the NPRG, and
illustrate various strategies that have been used to obtain so-
lutions of the flow equations. These will provide the neces-
sary background to motivate the approximation scheme pre-
sented in Sec. III, as well as the approximations involved in
the construction of the initial Ansatz for the four-point func-
tion. The reader familiar with the NPRG may skip this sec-
tion and go directly to Sec. III. The results for the self-energy
are presented in Sec. IV.

The self-energy thus obtained has the correct behavior at
all momenta. It agrees with perturbation theory in the ultra-
violet and it presents the expected power-law behavior in the
infrared. As a benchmark for our approximation scheme we
shall use the shift �Tc of the transition temperature of a
weakly interacting Bose gas �14,15� �see also Ref. �16� for a
recent review on the theory of the weakly interacting Bose
gas�. As we shall recall later, the precise evaluation of �Tc
requires an accurate knowledge of a two-point function at all
momentum scales, and it constitutes therefore a very strin-
gent test of any method aiming at getting the full momentum
dependence of n-point functions. As shown in Ref. �14�, the
calculation of �Tc reduces to that of the change ���2	 of the
magnitude of the fluctuations of the field described by the
action �1�, for d=3 and N=2 �17�. This calculation can be
done immediately once the self-energy is known. It is pre-
sented in Sec. IV B together with a comparison with esti-
mates of this quantity using different techniques, for instance
lattice calculations �18,19�.

In a companion paper �20� that we shall call Paper II, we
extend the method described here to the next-to-leading or-
der calculation of the self-energy �which involves the leading
order calculation of the four-point function�. Some of the
results of this study have already been presented in Ref. �21�.
However, since the publication of Ref. �21�, we have been
able to improve the accuracy of the leading order calculation
of the four-point function, which yields a considerable im-
provement of the next-to-leading order self-energy; the final
results that we obtain for �Tc are in excellent agreement with

the lattice calculations, with a much reduced theoretical un-
certainty as compared with the estimates presented in the
present paper �see Paper II�. Further progress has been
achieved in an effort to get rid of some of the approximations
used in the present work, and which contributes to the theo-
retical uncertainty in the predictions. A possible strategy to
do so has been presented in Ref. �22�, and first results con-
cerning its numerical implementation will be presented
shortly �23�.

II. SOME FEATURES OF THE NPRG EQUATIONS

A. Generalities

The NPRG allows the construction of a set of effective
actions ����� which interpolate between the classical action
S and the full effective action ����: In ����� the magnitude
of long wavelength fluctuations of the field is controlled by
an infrared regulator depending on a continuous parameter �
which has the dimension of a momentum. The full effective
action is obtained for the value �=0, the situation with no
infrared cutoff and where therefore all fluctuations are taken
into account. In the other limit, corresponding to a value of �
of the order of a microscopic scale � at which fluctuations
are suppressed, ��=���� reduces to the classical action �44�.

In practice the control of the magnitude of the fluctuations
is implemented by adding to the classical action �1� the regu-
lator

�S���� =
1

2
� ddq

�2��d�i�q�R��q��i�− q� , �2�

where R� denotes a family of “cutoff functions” depending
on �. The role of �S� is to suppress the fluctuations with
momenta q��, while leaving unaffected those with q	�.
Thus, typically, R��q�→�2 when q��, and R��q�→0 when
q	�. There is a large freedom in the choice of R��q�, abun-
dantly discussed in the literature �24–27�. The choice of the
cutoff function matters when approximations are done, as is
the case in all situations of practical interest. We have used in
this work the cutoff function proposed in Ref. �24�:

R��q2� 
 ��2 − q2����2 − q2� . �3�

This regulator allows many calculations to be done analyti-
cally. It is known to work well with the derivative expansion
in leading order, which we shall use in this work.

For each value of �, one defines the generating functional
of connected Green’s functions,

W��J� = ln� D� exp�− S��� − �S���� +� ddx��x�J�x�� .

�4�

We have, for instance,

��,J�x� 
 ���x�	�,J =
�W�

�J�x�
. �5�

The Feynman diagrams contributing to W� are those of ordi-
nary perturbation theory, except that the propagators contain
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the infrared regulator. We also define the effective action,
through a modified Legendre transform that includes the ex-
plicit subtraction of �S�:

����� = − W��J�� +� ddx��x�J��x� − �S���� , �6�

where J� is obtained by inverting Eq. �5�. Note that, in this
inversion, � is considered as a given variable, so that J�

becomes implicitly dependent on �.
One can write an exact flow equation for ����� which

gives its variation as a function of �, at fixed �. It reads
�1–5�

������� =
1

2
tr� ddq

�2��d��R��q2����
�2� + R��q,−q

−1 , �7�

where ��
�2� is the second derivative of �� with respect to �,

and the trace tr runs over the O�N� indices. Equation �7� is
the master equation of the NPRG. Its right-hand side has the
structure of a one loop integral, with one insertion of
��R��q2� �see Fig. 1�. The solution of Eq. �7� yields the ef-
fective action ����=��=0��� starting with the initial condi-
tion ��=����=S��� �see, e.g., Ref. �6��.

As is well known �see, e.g., Ref. �28��, the effective action
���� is the generating functional of the one-particle irreduc-
ible n-point functions. This property extends trivially to
�����. Since we shall be concerned only with n-point func-

tions for constant �eventually vanishing� external fields we
exploit translational invariance to define reduced n-point
functions ��n��� ; p1 , . . . , pn� as follows:

�2��d��d��p1 + ¯ + pn���n���;p1, . . . ,pn�

=� ddx1 ¯� ddxnei�j=1
n pj·xj� �n�����

���x1� ¯ ���xn�
�

�=cst
.

�8�

By differentiating Eq. �7� with respect to �, and then letting
the field be zero, one gets the flow equations for all n-point
functions in a vanishing background field �. For example,
the equation for the two-point function reads

���12
�2���;p� 
 �12����;p�

= −
1

2
� ddq

�2��d��R��q�G2��;q�

��12ll
�4� ��;p,− p,q,− q� , �9�

where we have introduced the self-energy �� ;q� and

G−1��,q� = q2 + R��q� + ��;q� . �10�

In Eq. �9�, and later in this paper, we often denote simply by
numbers 1, 2, etc., the O�N� indices i1, i2, etc., in order to
alleviate the notation. A diagrammatic illustration of the
right-hand side of Eq. �9� is given in Fig. 2. Similarly, the
flow of the four-point function in vanishing field reads

���1234
�4� ��;p1,p2,p3,p4� =� ddq

�2��d��Rk�q2�G2��;q�G��;q + p1 + p2��12ij
�4� ��;p1,p2,q,− q − p1 − p2�

��34ij
�4� ��;p3,p4,− q,q − p3 − p4� + G��;q + p1 + p3��13ij

�4� ��;p1,p3,q,− q − p1 − p3�

��24ij
�4� ��;p2,p4,− q,q − p2 − p4� + G��;q + p1 + p4��14ij

�4� ��;p1,p4,q,− q − p1 − p4�

��32ij
�4� ��;p3,p2,− q,q − p3 − p2�� −

1

2
� ddq

�2��d��R��q�G2��;q��1234ii
�6� ��;p1,p2,p3,p4,q,− q� .

�11�

The four contributions in the rhs. of Eq. �11� are represented
in the diagrams shown in Figs. 3 and 4.

Equations �9� and �11� for the two- and four-point func-
tions constitute the beginning of an infinite hierarchy of ex-

act equations for the n-point functions, with the flow equa-
tion for the n-point function involving all the m-point
functions up to m=n+2. Clearly, solving this hierarchy re-
quires approximations. In the rest of this section we discuss

FIG. 1. Diagrammatic illustration of the right-hand side of the
flow equation of the effective action, Eq. �7�. The crossed circle
represents an insertion of ��R�, and the thick line is a full propaga-
tor in an arbitrary background field.

FIG. 2. Diagrammatic illustration of the rhs of the flow equation
for the two-point function, Eq. �9�. The black dot denotes the four-
point function and the thick line is the full propagator G. The
circled cross represents the insertion of ��R�.
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various approximations that are commonly used in the con-
text of the NPRG, and that we shall exploit in the more
general scheme presented in the next section. In the next
subsection we recall how perturbation theory can be recov-
ered from the hierarchy through an iterative procedure. Then,
we focus on the regime of small momenta where an expan-
sion in powers of gradients of the field often yield accurate
results. In particular we briefly discuss the leading order of
this expansion, the local potential approximation �LPA�. Fi-
nally, in the last subsection, we review simple properties of
correlation functions of the O�N� model in the limit of large
N: this will provide a simple, yet nontrivial, example in
which the momentum dependence of correlation functions
can be analyzed in detail.

B. Perturbation theory

Perturbation theory can be recovered by solving the exact
flow equations iteratively, starting with the classical action as
initial input �see, e.g., Refs. �29,30��. The perturbative ex-
pansion of the effective action, or equivalently the loop ex-
pansion, is controlled by a “small parameter,” namely �.
Making this parameter explicit one rewrites Eq. �7� as

������� =
�

2
Tr ��R����

�2� + R��−1, �12�

and then proceed to the expansion in powers of �. In leading
order ����� is independent of � and is equal to the classical
action:

��
�0���� = S��� + O��� . �13�

The solution of this equation can be used to obtain an ap-
proximation for the two-point function ��

�2����, by taking the

second derivative of S��� with respect to � �see Eq. �8��. At
the next iteration this is used in the right-hand side of Eq.
�12� in order to obtain the order 1 correction to �����. One
gets then, after integrating the flow equation from � to �
�using the fact that S�2� is independent of ��,

��
�1���� = S��� +

�

2
Tr ln� S�2� + R�

S�2� + R�
� + O��2� , �14�

where one recognizes the familiar one-loop expression of the
effective action. One can repeat the procedure and show that,
after n iterations, one reproduces the result that one would
obtain by calculating ����� using perturbation theory at or-
der n loop �with the infrared cutoff�.

In the case of massless theories, which we are interested
in here, this iteration scheme is applicable only for values of
� not too small. Indeed, in general, perturbation theory stops
to make sense �28� when ���c, with �c�u1/�4−d�, where u is
the coupling constant defined in Eq. �1� �concrete estimates
of �c will be presented in the next subsection�. When �→0,
perturbative calculations may lead to infrared divergent ex-
pressions. This difficulty is particularly important in the scal-
ing regime, where p�pc��c. Other approximation schemes
are then required.

C. Local potential approximation

The derivative expansion offers the possibility to calculate
some properties of the scaling regime. It exploits the fact that
the shape of the regulator in the flow equations �e.g., Eqs. �9�
or �11�� forces the loop momentum q to be smaller than �,
i.e., only momenta q�� contribute to the flow. Besides, in
general, the regulator insures that, as long as ��0, all ver-
tices are smooth functions of momenta �45�. Then, in the
calculation of the n-point functions at small external mo-
menta pi, it is possible to expand the n-point functions in the
rhs of the flow equations in terms of q2 /�2 and pi

2 /�2, or
equivalently in terms of the derivatives of the field. Note,
however, that since eventually �→0, such an expansion
strictly makes sense only for pi=0, unless there is a mass in
the problem.

In leading order, this procedure reduces to the so-called
local potential approximation �LPA�, which assumes that the
effective action has the form

��
LPA��� =� ddx�1

2
���i���i + V����� , �15�

where �
�i�i /2. The derivative term here is simply the one
appearing in the classical action, and V���� is the effective
potential. The exact flow equation for V� is easily obtained
by assuming that the field � is constant in Eq. �7�. One
needs, however, to take into account the O�N� symmetry, and
to decompose the propagator of the scalar field in a constant
background �i into its transverse �GT� and longitudinal �GL�
components:

Gij��;q� = GT��;q���ij −
�i� j

2�
� + GL��;q�

�i� j

2�
. �16�

Then the equation for the potential reads

FIG. 3. Diagrammatic illustration of the rhs of the flow equation
for the four-point function, Eq. �11�: contribution of the four-point
functions �represented by black disks� in the three channels s, t, and
u, from left to right. The crossed circle represents an insertion of
��R�, and the thick line is a full propagator.

FIG. 4. Diagrammatic illustration of the rhs of the flow equation
for the four-point function, Eq. �11�: contribution of the six-point
function ��6� �represented by a black disk�. The crossed circle rep-
resents an insertion of ��R�, and the thick line is a full propagator.
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��V���� =
1

2
� ddq

�2��d��R��q��N − 1�GT��;q� + GL��;q�� .

�17�

By using the LPA effective action, Eq. �15�, one gets

GT��;q� =
1

q2 + V���� + Rk�q�
,

GL��;q� =
1

q2 + V���� + 2�V���� + R��q�
, �18�

with V����=dV /d� and V����=d2V /d�2. With these propa-
gators, Eq. �17� becomes then a closed equation.

Higher order corrections to the LPA include terms in the
effective action with an increasing number of derivatives.
Although there is no formal proof of convergence, the de-
rivative expansion exhibits quick apparent convergence if the
regulator R��q� is appropriately chosen �24,27,31�. In prac-
tice, the LPA reproduces well the physical quantities domi-
nated by small momenta �such as the effective potential or
critical exponents� in all theories where it has been tested
�see, for example, Refs. �6,8��. Higher order corrections lead
to significant improvements �32�, and the derivative expan-
sion has been pushed up to third order �31�, yielding critical
exponents in the Ising universality class of the same level of
precision as those obtained with the best accepted methods
�see, e.g., Ref. �31��.

An interesting improvement of the LPA, which we refer to
as the LPA�, takes into account a running field renormaliza-
tion constant Z� and allows for a nontrivial anomalous di-
mension, determined from the cutoff dependence of Z� �1�.
In the LPA�, the effective action is assumed to be of the form

��
LPA���� =� ddx�Z�

2
���i���i + V����� , �19�

where Z� is a function of � �and not of ��. It is useful to
explicitly include the field normalization in the regulator �3�,
i.e., we redefine R� by multiplying it by the factor Z�. Thus
the regulator used in the present work becomes

R��q� = Z���2 − q2����2 − q2� . �20�

The factor Z� is determined from the flow equation for ��
�2� in

a constant external field, which can be derived from Eq. �7�.
The vertices and propagators entering this equation are those
dictated by the form �19� assumed for the effective action.
By expanding the resulting equation to order p2: ��2��� ; p�
−��2��� ;0�� p2Z� �recall that for nonvanishing �, ��2��� ; p�
is a smooth function of p�, one obtains the following equa-
tion for Z� �6�:

��Z� =
4

d
�0�V���0��2 �̃�� ddq

�2��dq2GL
2��;q�GT

2��;q�

��Z� + R���q��2, �21�

where R���q�
�R��q� /�q2, the derivative �̃� acts only on the
explicit factors R� �and their derivatives�, and � is fixed at its
running minimum �=�0 �which depends on ��. The anoma-

lous dimension is related to Z� by �see, e.g., Ref. �6�; for a
simple proof, see Appendix A�:

�� = − ���ln Z�. �22�

In the LPA� the flow equation for the effective potential is
the same as in the LPA, Eq. �17�, except for the replacement
q2→Z�q2 in the propagators. It follows that the flow equa-
tion for the potential is coupled with the flow equation for
Z�, Eq. �21�.

The derivatives of V���� with respect to � give the n-point
functions at zero external momenta as a function of �. We
shall be mostly concerned in this paper with the critical re-
gime where �0��=0�=0, and hence in n-point functions in
vanishing external field, for which we shall introduce special
notation. We set

m�
2 
 �dV�

d�
�

�=0
, g� 
 �d2V�

d�2 �
�=0

, h� 
 �d3V�

d�3 �
�=0

.

�23�

For vanishing external field the propagator is diagonal,
G12�� ;q�=�12GLPA��� ;q�, with

GLPA�
−1 ��;q� = Z�q2 + R��q� + m�

2 . �24�

For the n-point functions ��4� and ��6�, we have, respectively,

�1234
�4�LPA���� = g���12�34 + �13�24 + �14�23� , �25�

and

�123456
�6�LPA���� = h���56��12�34 + �13�24 + �14�23� + �46��12�35

+ �13�25 + �23�15� + �36��12�45 + �14�25

+ �15�24� + �26��13�45 + �14�35 + �15�34�

+ �16��23�45 + �24�35 + �25�34�� . �26�

In order to factor out the large variations of the effective
potential which arise when � varies from the microscopic
scale � to the physical scale �=0, and also to exhibit the
fixed point structure, it is convenient to isolate the explicit
scale factors �V���d, Z����d−2� and to define dimension-
less quantities:

v��z� 
 Kd
−1�−dV���� , �27�

with

z 
 Kd
−1Z��2−d� . �28�

In these definitions, for further simplifications, we have also
included a factor Kd, which originates from angular integra-
tions:

Kd
−1 
 2d−1�d/2d ��d/2� . �29�

Note that Kd can be a small number, e.g., K3=1/6�2. We
also introduce dimensionless couplings:

m�
2 
 Z��2m̂�

2, g� 
 Kd
−1Z�

2�4−dĝ�, h� 
 Kd
−2Z�

3�6−2dĥ�,

�30�

so that
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m̂�
2 = �dv�

dz
�

z=0
, ĝ� = �d2v�

dz2 �
z=0

, ĥ� = �d3v�

dz3 �
z=0

.

�31�

The solution of the LPA� is well documented in the lit-
erature �see, e.g., Refs. �6,27��. It is convenient to solve the
equation for the derivative of the potential with respect to z,
i.e., w��z�
�zv��z�, rather than that for the effective poten-
tial itself. With the Litim regulator �20�, the integrals in Eqs.
�17� and �21� can be done analytically. One gets

���w� = − �2 − ���w� + �d − 2 + ���zw�� − �1 −
��

d + 2
�

�� �N − 1�w��

�1 + w��2 +
3w�� + 2zw��

�1 + w� + 2zw���2� , �32�

and

�� =
4z0�w���z0��2

�1 + 2z0w���z0��2 , �33�

where w��=�zw��z�, w��=�z
2w��z�, and z0=z0��� is the running

minimum of the potential �w��z0�=0�. Equations �32� and
�33� are solved starting from the initial condition at �=�:

w��z,� = �� = m̂�
2 + ĝ�z , �34�

where m̂� and ĝ� are related to the parameters r and u of the
classical action �1� by

m̂�
2 =

r

�2 , ĝ� =
u

�4−d

Kd

3
. �35�

Before looking at some results obtained by solving nu-
merically Eqs. �32� and �33�, it is useful to get insight into
the expected behavior of the solution by solving Eq. �32�
approximately �6�, ignoring the anomalous dimension. To
this aim, we assume that, for all �, w��z� retains the form of
Eq. �34�, i.e.,

w��z� = m̂�
2 + ĝ�z . �36�

The minimum of the potential z0��� satisfies w��z0�=0, i.e.,
z0���=−m̂�

2 / ĝ�. The equations for z0��� and ĝ� are easily
obtained from Eq. �32�, taking into account that, at criticality,
z0ĝ�1 to make simplifications whenever appropriate. One
gets

�
dz0

d�
= − �d − 2�z0 + N + 2 − 6z0ĝ�,

�
dĝ�

d�
= �d − 4�ĝ� + 2�N + 8�ĝ�

2 . �37�

The equation for ĝ� defines the usual one-loop � function;
in this approximation this equation decouples and can be
solved explicitly:

ĝ� =
ĝ*

1 + � �

�c
�4−d , �38�

where ĝ* is the value of ĝ at the infrared �IR� fixed point,
ĝ*= �4−d� / �2�N+8��, and �c is the value of � for which
ĝ�= ĝ* /2. We have �ĝ*� ĝ��

��c

�
�d−4

=
ĝ* − ĝ�

ĝ�

�
ĝ*

ĝ�

. �39�

�c
4−d=uKd / �3ĝ*� is the typical scale which separates the scal-

ing region, dominated by the IR fixed point, where ĝ= ĝ*,
from the perturbative region, dominated by the UV fixed
point ĝ=0 (when ���c, one can expand ĝ� in powers of
�c /�; in leading order g�= �u /3��1− ��c /��4−d�).

We show in Figs. 5 and 6 the dimensionless coupling ĝ�

and the anomalous dimension �� obtained by solving the
complete LPA� equations numerically for d=3 and N=2.
The coupling constant ĝ� has been fixed to a small value,
and m̂�

2 has been adjusted in order to reach the IR fixed point
as �→0. Note that w� depends a priori on u, �, and �, but
since it is dimensionless, it can only depend on the ratios � /u
and u /� �in d=3�. However, because the theory is super-
renormalizable in d=3, w� becomes independent of u /� in
the limit of large �. One finds numerically that this regime is
attained when u /��10−3, a condition satisfied in all numeri-
cal results presented in this paper: more precisely, we used
u /�=3K3

−1�10−6�1.8�10−4, i.e., ĝ�=�=10−6; the corre-
sponding value of m̂�

2 needed to reach the fixed point is
m̂�

2 =−3.999 527¯ �10−6. The general behaviors seen in
Figs. 5 and 6 are those expected from the approximate ana-
lytic solution discussed above, in particular the fixed point
values reached at small �. On a logarithmic scale, the change
of regime between the perturbative regime at large � and the
scaling regime at small � occurs rather rapidly, at the typical
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FIG. 5. The dimensionless coupling ĝ� as a function of � /u �in
a logarithmic scale� obtained by solving the LPA� equations for
N=2 and d=3. The value of ĝ� at the IR fixed point is ĝ*=0.064.
The value of � for which ĝ�= ĝ* /2 is �c=0.072.
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scale �c. In Fig. 5 �c /u�0.07, not far from the value ob-
tained in the approximate analysis presented above: from
Eqs. �35� and �39�, for d=3 and N=2, �c /u=20K3 /3�0.11.

Before closing this subsection, let us write the flow equa-
tions for the two- and four-point functions in vanishing ex-
ternal field, in the LPA� limit, in a form that we shall use
later. These equations are obtained by differentiating once
and twice Eq. �17� with respect to �, then setting �=0, and
using the definitions in Eq. �23�. They read, respectively

���m�
2 = −

�N + 2�
2

g�Id
�2�, �40�

and

���g� = �N + 8�g�
2Id

�3���� −
1

2
�N + 4�h�Id

�2���� , �41�

where we have defined

Id
�n���� 
 � ddq

�2��d���R��q2�GLPA�
n ��;q�

= 2Kd
�d+2−2n

Z�
n−1

1

�1 + m̂�
2�n�1 −

��

d + 2
� , �42�

the explicit form in the second line being obtained for the
Litim regulator. Note that, after going to dimensionless vari-
ables and making the same approximations that leads us to
Eqs. �37� �neglect the second derivative of w� with respect to
z, and assume �m̂�

2 � �1� one can transform Eq. �41� into the
second of Eqs. �37�.

For further use, we also rewrite Eq. �41� in the following
form:

���g� = �N + 8�g�
2Id

�3�����1 − F�� . �43�

where

F� =
1

2

N + 4

N + 8

Id
�2����

Id
�3����

h�

g�
2 =

1

2

N + 4

N + 8
�1 + m̂�

2�
ĥ�

ĝ�
2 . �44�

The function F� gives a measure of the relative magnitude of
the contribution of the six-point vertex term in the flow equa-
tion for the four-point function. One can see in Fig. 7 that, as
expected, the relative contribution of the six-point vertex is
negligible in the perturbative regime ����c�, but becomes
of order 1 in the scaling regime ����c�.

D. Correlation functions at large N

In the critical case, the derivative expansion gives accu-
rate results for the correlation functions and their derivatives
only at zero external momenta. In order to get insight into
the effect of nonvanishing external momenta we consider
now the correlation functions in the large N limit �at fixed
uN�. Our goal here is to illustrate some general features of
the momentum dependence of the correlation functions, and
how this is affected by the regulator, not to present a consis-
tent discussion of the flow equations and their solutions,
which can be found in the literature �11,22,33,34�. Thus we
shall not attempt to solve directly the NPRG equations: since
they do not close, their solution requires a somewhat elabo-
rate treatment �see, e.g., Ref. �22��. Rather, we shall simply
write the solution for the first n-point functions, relying on
well known results �35�, and verify that they do satisfy the
NPRG equations.

For vanishing field, the inverse propagator is of the form

G−1��;q� = q2 + m�
2 + R��q� , �45�

where m� is a running mass given by a gap equation

m�
2 = r +

Nu

6
� ddq

�2��d �G��;q� − G��;q�� . �46�

The four-point function has the following structure:
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FIG. 6. The anomalous dimension �� as a function of � /u �in a
logarithmic scale� obtained by solving the LPA� equations for N
=2 and d=3. The value of � at the IR fixed point is �*=0.044.
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FIG. 7. The function F� in Eq. �43� as a function of � /u �in a
logarithmic scale�, calculated for N=2 and d=3.
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�1234
�4� ��;p1,p2,p3,p4� = �12�34g��p1 + p2� + �13�24g��p1 + p3�

+ �14�23g��p1 + p4� , �47�

where g��p� is given by

g��p� =
u

3

1

1 +
Nu

6
Bd��;p�

, �48�

with

Bd��;p� 
 � ddq

�2��dG��;q�G��;p + q� . �49�

Finally we shall need shortly the six-point function
�1234mm

�6� �� ; p1 , p2 , p3 , p4 ,q ,−q� �summation over repeated in-
dices is understood�

1

N
�1234mm

�6� ��;p1,p2,p3,p4,q,− q�

= h��p1 + p2��12�34 + h��p1 + p3��13�24

+ h��p1 + p4��14�23, �50�

with

h��p� = Ng��0�g�
2�p� � ddq

�2��dG2��;q�G��;q + p� . �51�

All these results can be obtained in a straightforward fash-
ion by calculating the corresponding Feynman diagrams with
a regulator. It is, however, easy to verify that the various
n-point functions that we have just written are indeed solu-
tions of the flow equations in the large N limit.

To this aim, one notes first that Eq. �9� reduces to an
equation for the running mass:

��m�
2 = −

1

2
Ng��0� � ddq

�2��d��R��q�G2��;q� , �52�

and using Eq. �48�, it is easy to check that this equation is
equivalent to the gap equation, Eq. �46�.

Next, we observe that in the large N limit, a single chan-
nel contributes in Eq. �11� for the four-point function; one
can then use the following identity in this limit:

�12ij
�4� ��;p1,p2,q,− q − p1 − p2��34ij

�4� ��;p3,p4,− q,q − p3 − p4�

= Ng�
2�p1 + p2��12�34, �53�

together with Eq. �50� for ��6�, and obtains

���g��p� = Ng�
2�p�Jd

�3���;p� −
N

2
h��p�Id

�2���� , �54�

where the function Id
�2���� is that defined in Eq. �42�, here

with n=2 and the propagator �45� replacing GLPA�. The func-
tion Jd

�3��� ; p� is obtained from the general definition

Jd
�n���;p� 
 � ddq

�2��d���R��q�Gn−1��;q�G��;p + q� .

�55�

Note that Jd
�n��� ; p=0�= Id

�n����. Explicit expressions for the
function J3

�3��� ; p� are given in Appendix B.
At this point we remark that the flow equation for g��p�

can also be obtained directly from the explicit expression
�48�, in the form

��g��p� = −
N

2
g�

2�p���� ddq

�2��dG��;q�G��;q + p� .

�56�

It is then straightforward to verify, using Eqs. �52� and �51�
that Eqs. �54� and �56� are indeed equivalent. The first term
in Eq. �54� comes from the derivative of the cutoff function
in the propagators in Eq. �56�, while the second term, which
involves the six-point vertex, comes from the derivative of
the running mass in the propagators.

Note that Eq. �52� for m� and Eq. �54� for g��p=0� be-
come identical respectively to Eqs. �40� and �41� of the LPA
in the large N limit, a well known property �33�.

In view of the approximations that we shall develop in the
next section, it is worth analyzing characteristic features of
the function g��p�. For simplicity we specialize for the rest
of this subsection to d=3. Furthermore, for the purpose of
the present, qualitative, discussion, one may assume m�=0.
This allows us to obtain easily g��p� from Eq. �48� in the two
limiting cases �=0 and p=0. In the first case, we have

g��0� =
u

3

1

1 +
uN

9�2

1

�

. �57�

This is identical to Eq. �38�, with here ĝ*=1/ �2N� and �c

=Nu /9�2. �The corresponding expressions for Eq. �38� in-
volve N+8 instead of N, so that the values of ĝ* and �c
obtained in the large N limit may be numerically quite dif-
ferent from the actual LPA values when N is not too large,
e.g., when N=2.� In the other case, we have

g�=0�p� =
u

3

1

1 +
uN

48

1

p

=
u

3

p

p + pc
, �58�

with pc
uN /48.
One sees on Eqs. �57� and �58� that the dependence on p

of g�=0�p� is quite similar to the dependence on � of g��p
=0�. In particular both quantities vanish linearly as �→0 or
p→0, respectively. The result of the complete �numerical�
calculation, including the effect of the running mass �i.e.,
solving the gap equation �46� and calculating g��p� from Eq.
�48��, can in fact be quite well represented �to within a few
percent� for arbitrary p and � by the following approximate
formula:
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g��p� �
u

3

X

1 + X
, X 


�

�c
+

p

pc
. �59�

This simple expression shows that p, when it is nonvanish-
ing, plays the same role as � as an infrared regulator. In
particular, at fixed p, the flow of g��p� stops when X be-
comes independent of �, i.e., when �� p��c / pc�, with
�c / pc=16/3�2�0.54. This important property of decou-
pling of the short wavelength modes is illustrated in Fig. 8.
As shown by this figure, and also by the expression �59�, the
momentum dependence of the four-point function can be ob-
tained from its cutoff dependence at zero momentum. In fact
Fig. 8 suggests that, to a very good approximation, there
exists a parameter � such that g�� ; p��g�� ;0� when �
��p, and g�� ; p��g��=�p ;0� when ���p. From the dis-
cussion above, one expects ���c / pc=16/3�2�0.54, which
is indeed in agreement with the analysis in Fig. 8.

In order to understand better the origin of this result, we
rewrite Eq. �54� as follows:

��g��p� = Ng�
2�p�Jd

�3���;p��1 − F��,p�� , �60�

where

F��;p� 

1

2

h��p�Id
�2����

g�
2�p�Jd

�3���;p�
. �61�

When p=0, Eq. �60� coincides with the LPA equation �43�,
and the function F�� ; p� with the large N limit of the func-
tion F� defined for the LPA in Eq. �44�. The p dependence
of Jd

�n��� ; p� is relatively simple: when p��, Jd
�n��� ; p�

� Id
�n����; when p��, Jd

�n��� ; p� vanishes as 1/ p2. On a loga-
rithmic scale the transition between these two regimes occurs
rapidly at momentum p��, as illustrated in Fig. 9. Figure 10
shows the similar behavior of the function h��p� /h�, where
h��p�is the function �51� which appears in the numerator of

Eq. �61�. Finally, Fig. 11 displays the function F�� ; p� /F�: as
one can see, the momentum dependence of F�� ; p� is non-
negligible only in the region where the function Jd

�n��� ; p� is
negligible, namely for �	 p. All this suggests that one can
rewrite Eq. �60� for g��p� as follows:

��g��p� � Ng�
2�p���1 −

�2p2

�2 �Id
�3�����1 − F�� , �62�

where � is a parameter of order unity. Equation �62� is just
Eq. �43� in the large N limit, and for ���p. The � function
ensures that the flow exists only when ���p, and stops for
smaller values of �. These are precisely the features observed
in Fig. 8.

III. TOWARDS THE SOLUTION OF THE NPRG
EQUATIONS FOR ARBITRARY MOMENTA

Our proposal to solve the NPRG equations for the n-point
functions at arbitrary momenta, builds upon the lessons

FIG. 8. The function g��p� �in units of �� obtained from a
complete numerical solution of Eqs. �52� and �54�, as a function of
� /u �in a logarithmic scale� for five values of p: from bottom to top,
p /u=0.001, 0.01, 0.1, 1, and 10. The envelope corresponds to p
=0. This figure illustrates the decoupling of modes: for each value
of p, the flow stops when ���p. The various horizontal asymp-
totes �dotted lines� correspond to the single value �=0.54.

FIG. 9. The function J3
�3��� ; p� / I3

�3���� as a function of p /� �in a
logarithmic scale�, for different values of �: �=10−3u �circles�, �
=u �diamonds�, and �=104u �squares�.

FIG. 10. The function J3
�3��� ; p� / I3

�3���� as a function of p /� �in
a logarithmic scale� �full line�. The function h�� ; p� /h�� ;0� as a
function of p /� �dashed line�.
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learned in the specific examples discussed in the previous
section. Namely, we shall take advantage of the decoupling
of modes, exploit the solution of the LPA�, and use the pos-
sibility to increase accuracy through iterations.

The decoupling of modes is well illustrated in Fig. 8 of
the previous section. It suggests that the momentum depen-
dence of the n-point function can be deduced from their �
dependence, as obtained from the LPA�. To be more specific,
assume for simplicity that all external momenta are of the
same order of magnitude, and call them generically p. Then
as long as �	 p, one can use the LPA� to calculate the
n-point functions. When �� p, the flow stops and the n-point
functions remain at their values for �� p. Note that this ar-
gument ceases to apply when the momenta enter as excep-
tional configurations, for which effectively p=0. These ex-
ceptional configurations cause special difficulties that we
shall have to deal with.

The possibility to increase the accuracy through iterations
is based on the property recalled in the previous section, that
the iteration of the NPRG equations, starting with the classi-
cal values of the n-point functions as initial input, recon-
structs the usual loop expansion. Thus one may expect to
improve the accuracy of the n-point functions at high mo-
menta by iterations. The situation at small momenta is more
subtle. Indeed, in the critical regime, iterations may affect the
fixed point structure, and may result in unphysical behaviors.

This particular feature will be discussed in Paper II.
The procedure that we propose starts with an initial An-

satz for the n-point functions to be used in the right-hand
side of the flow equations. Integrating the flow equation of a
given n-point function gives then the leading order �LO�
estimate for that n-point function. Inserting the leading order
of the n-point functions thus obtained in the right-hand side
of the flow equations and integrating gives then the next-to-
leading order �NLO� estimate of the n-point functions, and
so on.

The equations will be solved starting at the bottom of the
hierarchy, that is, with the equation for the two-point func-
tion. The flow equation for the two-point function involves in
its right-hand side the propagator �hence the two-point func-
tion�, and the four-point function. To determine the two-point
function in leading order, we need therefore an initial Ansatz
for the propagator and the four-point function. Similarly, to
get the four-point function in leading order, we need an ini-
tial Ansatz for the propagator, for the four-point function and
the six-point function, and so on.

There is no small parameter controlling the convergence
of the process, and the terminology LO, NLO refers merely
to the number of iterations involved in the calculation of the
n-point function considered. Obviously, the calculations be-
come increasingly complicated as the number of iterations
increases, and it is essential that the initial Ansatz be as close
as possible to the exact solution so that only one or two
iterations suffice to get an accurate result. Our main task then
is to construct such a good initial Ansatz.

A. Construction of the initial Ansatz—Generalities

The initial Ansatz for the n-point functions are the solu-
tions of approximate flow equations obtained by making the
following three approximations.

�i� Vertices are slowly varying functions of the external
momenta. Our first approximation �A1� exploits a crucial
property of the NPRG: the derivative ��R��q� limits the
range of integrations in the flow equations to q��. The mo-
mentum q enters the vertices in the flow equations typically
in the form �12¯n

�n� �� ; p1 , p2 , . . . , pn−1+q , pn−q�. Approxima-
tion A1 consists then in assuming that, for any set of external
momenta p1 , p2 , . . . , pn�,

��12¯n
�n� ��;p1,p2, . . . ,pn−1 + q,pn − q� − �12¯n

�n� ��;p1,p2, . . . ,pn−1,pn�
�12¯n

�n� ��;p1,p2, . . . ,pn−1,pn�
�� 1. �63�

This approximation is justified when the momenta
p1 , p2 , . . . , pn� are much larger than �, since then we can
neglect q compared to pi, assuming that ��n� is a smooth
function of the momenta when these are large. In the oppo-
site case of vanishing pi’s, we use the fact that the regulator
insures that ��n� remains a smooth functions of its arguments;

in this case, the approximation A1 is analogous to the leading
order in the derivative expansion, i.e., to the LPA, known to
be a good approximation.

The approximation A1 is used to set q=0 in the vertices
��n� and to factor them out of the integrals in the rhs of the
flow equations.

FIG. 11. The function F�� ; p� /F� in the large N-limit �see Eq.
�61�� as a function of p /� �in a logarithmic scale�.
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�ii� Propagators. The second approximation �A2� con-
cerns the propagators in the flow equation, for which we
make the replacements

G�p + q� → GLPA��q���1 −
�2p2

�2 � , �64�

where � is an adjustable parameter. A motivation for
this approximation is the decoupling of high momentum
modes in the flow equations, as illustrated in Sec. II D,
and the parameter � will play here a role similar to the
one it plays in Sec. II D. A measure of the quality of this
approximation is provided by Fig. 9 which shows the ratio
J3

�3��� ; p� /J3
�3��� ; p=0� where Jd

�n��� ; p� is defined in Eq. �55�.
J3

�3��� ; p� is the integral which remains in Eq. �11� after ap-
proximation A1 and after choosing as propagator that of the
LPA� �the consistency of this choice will be verified shortly�.
As seen in Fig. 9, J3

�3��� ; p� /J3
�3��� ; p=0�, as a function of

p2 /�2, looks indeed like a step function, with a weak residual
� dependence.

Different criteria can be used to fix �. One may fix �
so that the inflexion point of the curve in Fig. 9 is at �p=�.
One then obtains, for N=2, �� .9. One can also adjust � so
that the integral over � of J3

�3��� ; p� is identical to that of
J3

�3��� ;0���1−�2p2 /�2�. This yields ��0.6. We regard
these two possible choices as defining roughly the range of
“acceptable” values of �, and accordingly we adopt the value
�=0.75±0.15 for our leading order estimate in the case N
=2. The dependence of the results on the choice of � will be
thoroughly discussed in the next section. It represents an
important source of theoretical uncertainty on the leading
order results which, to a large extent, will be eliminated at
next-to-leading order �see Paper II�.

Before moving to the next approximation, let us write the
equations for the two-point and four-point functions obtained
at this stage, i.e., after approximations A1 and A2. The equa-
tion for the two-point function becomes

����12
�2���;p� = −

1

2
�12ll

�4� ��;p,− p,0,0�Id
�2���� , �65�

and that for the four-point function reads

����1234
�4� �p1,p2,p3,p4� = Id

�3�������2 − �2�p1 + p2�2��12ij
�4� �p1,p2,0,− p1 − p2��34ij

�4� �p3,p4,0,− p3 − p4�

+ ���2 − �2�p1 + p3�2��13ij
�4� �p1,p3,0,− p1 − p3��24ij

�4� �p2,p4,0,− p2 − p4� + ���2 − �2�p1 + p4�2�

��14ij
�4� �p1,p4,0,− p1 − p4��32ij

�4� �p3,p2,0,− p3 − p2�� −
1

2
�1234ii

�6� �p1,p2,p3,p4,0,0�Id
�2���� , �66�

where the function Id
�n���� is defined in Eq. �42�.

Note that the approximation A2 amounts to truncate se-
verely the high momentum tails of the propagators. This will
cause inaccuracy at high momenta, and a dependence of the
leading order results on the value of �.

�iii� Approximation for the �n+2�-point function. In order
to close the equation for ��n� we need an approximation for
��n+2�. Namely, we need an approximation for ��4� in the
equation for ��2� and for ��6� in the equation for ��4�. Note
that we do not want to perform a truncation of the hierarchy,
as often done, by setting to zero the higher order n-point
functions: indeed in the scaling regime the contributions of
all vertices are of the same order of magnitude. Rather, we
shall try to obtain a rough estimate for ��n+2�, which is suf-
ficient in order to get the initial Ansatz for ��n� �this rough
estimate is not to be confused with the initial Ansatz for
��n+2��.

In order to construct this estimate for ��n+2� we rely on the
LPA� and also use an approximation inspired by the analysis
of the correlation functions in the N→� limit of the previous
section �Sec. II D�. We consider explicitly here the equations
for the two-point and the four-point functions.

In the case of the equation for ��2�, one needs an approxi-
mation for �12ll

�4� �� ; p ,−p ,0 ,0�, as can be seen in Eq. �65�.
This can be hinted from Eq. �47�, leading us to assume
�12ll

�4� �� ; p ,−p ,0 ,0�=N�12g��0�. The resulting initial Ansatz

for ��2� is simply a momentum independent function, the
running mass, whose flow equation is given by Eq. �52�.
Therefore our initial Ansatz for the propagator is consistent
with Eq. �24�, to within the small effect of the anomalous
dimension which is ignored at this stage.

We turn now to ��4�. As can be seen in Sec. II D, after
doing approximation A2, the two types of terms in the right-
hand side of the flow equation of ��4� are proportional, with
a coefficient that depends only on � �see Eqs. �54� and �62�,
and Fig. 11�. Our third approximation �A3� consists in as-
suming that this property holds in general, i.e., we set

���1234
�4��6��p1,p2,p3,p4� = − F����1234

�4��4��p1,p2,p3,p4� ,

�67�

where in the �left-hand side� lhs �1234
�4��6� is the six-point vertex

contribution to the flow of ��4� �last line in Eq. �66� and Fig.
4�, while the term multiplying −F� in the rhs is that including
only four-point vertices �the first three lines in Eq. �66� and
Fig. 3�. This relation becomes trivial in the LPA, i.e., when
all external momenta are zero. This allows us to fix F� from
Eq. �44�.

Combining all approximations, one gets the following
equation that needs to be solved in order to get the initial
Ansatz for ��4�:
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����1234
�4� ��;p1,p2,p3,p4� = Id

�3�����1 − F�����2 − �2�p1 + p2�2��12ij
�4� �p1,p2,0,− p1 − p2��34ij

�4� �p3,p4,0,− p3 − p4�

+ ���2 − �2�p1 + p3�2��13ij
�4� �p1,p3,0,− p1 − p3��24ij

�4� �p2,p4,0,− p2 − p4�

+ ���2 − �2�p1 + p4�2��14ij
�4� �p1,p4,0,− p1 − p4��32ij

�4� �p3,p2,0,− p3 − p2�� . �68�

In the rest of this section, we construct the solution of this equation in terms of the solution of the LPA�. As a simple
illustration of the method to be used, consider first the totally symmetric configuration of momenta: �p1+ p2�2= �p1+ p3�2

= �p1+ p4�2= p2 �and p1
2= p2

2= p3
2= p4

2=3p2 /4�. One then distinguishes in Eq. �68� two regions, according to the value of �
relative to �p. When ���p, all the terms in Eq. �68� are nonzero. One can then verify that the LPA� expression of ��4�, i.e.,
that given in Eq. �25�, is a solution of the equation. Since the initial condition at �=� has the form of Eq. �25�, and since Eq.
�68� is a first order differential equation in �, the LPA�solution is the unique solution for ���p. When ���p, the rhs of Eq.
�68� vanishes and the flow stops. In this region, the solution remains the LPA� solution, but taken at the fixed value �=�p.
These are the features that we uncovered when we analyzed the correlation functions in the large N limit in Sec. II D.

A similar separation into different regions, according to the value of �, can be done for general momentum configurations.
In all cases, when � is larger than all the combinations of momenta appearing in the � functions in Eq. �68�, the solution is
simply the LPA� solution. The other regions, where some of the � functions vanish, have to be analyzed case by case. One can
then solve Eq. �68� in two steps: first, for one vanishing momentum, p3=0 and p4=−p1− p2, then for any combination.

In the next two subsections, in order to simplify the notation, and except when ambiguities may arise, we shall often omit
to indicate the explicit � dependence of ��4�.

B. Calculation of �1234
„4…

„p1 ,p2 ,0 ,−p1−p2…

In this case, Eq. �68� reads

����1234
�4� �p1,p2,0,− p1 − p2� = Id

�3�����1 − F�����2 − �2�p1 + p2�2��12ij
�4� �p1,p2,0,− p1 − p2��34ij

�4� �0,− p1 − p2,0,p1 + p2�

+ ���2 − �2p1
2��13ij

�4� �p1,0,0,− p1��24ij
�4� �p2,− p1 − p2,0,p1�

+ ���2 − �2p2
2��14ij

�4� �p1,− p1 − p2,0,p2��32ij
�4� �0,p2,0,− p2�� . �69�

Notice that in each term in the rhs there is one vertex evaluated with two vanishing momenta. Furthermore, because of the
theta functions, each term gives a nonzero contribution only when the remaining nonvanishing momentum is smaller than � /�.
We are therefore in the conditions discussed at the end of the last subsection: the four-point functions with two vanishing
momenta are simply the LPA� ones �Eq. �25��. By using the fact that Bosonic vertex functions are completely symmetric under
simultaneous exchange of internal indices and momenta, we can rewrite Eq. �69� in the following way:

����1234
�4� �p1,p2,0,− p1 − p2� = g�Id

�3�����1 − F�� � ���2 − �2�p1 + p2�2���12ii
�4� �p1,p2,0,− p1 − p2��34 + �1234

�4� �p1,p2,0,− p1 − p2�

+ �1243
�4� �p1,p2,0,− p1 − p2�� + ���2 − �2p1

2���i2i4
�4� �p1,p2,0,− p1 − p2��13 + �3214

�4� �p1,p2,0,− p1 − p2�

+ �1234
�4� �p1,p2,0,− p1 − p2�� + ���2 − �2p2

2���1ii4
�4� �p1,p2,0,− p1 − p2��23 + �1324

�4� �p1,p2,0,− p1 − p2�

+ �1234
�4� �p1,p2,0,− p1 − p2��� . �70�

This is a first order linear equation where the momenta
are parameters. To solve it, we can assume without loss
of generality that p1

2� p2
2� �p1+ p2�2. For the rest of this

section, except when that would lead to confusion, we
will drop the arguments of �1234

�4� , being understood that
�1234

�4� refers to �1234
�4� �� ; p1 , p2 ,0 ,−p1− p2�. We need to

consider four different regions, according to the value
of �:

�a� ���p1. In this region, the solution is identical to that
of the LPA�.

�b� �p1����p2. In this region, Eq. �70� becomes

����1234
�4� = g�Id

�3�����1 − F���12ii
�4� �34 + 2�1234

�4� + �1243
�4�

+ �1ii4
�4� �23 + �1324

�4� � . �71�

To solve this equation, we first notice that the solution is

symmetric under the exchange of the second and the fourth
internal indices �with no exchange of the momenta�, i.e.,

�1234
�4� �p1,p2,0,− p1 − p2� = �1432

�4� �p1,p2,0,− p1 − p2� .

�72�

This property is true for �=�p1, and one can verify that it is
maintained along the flow. We then look for the general so-
lution symmetric in the indices 2 and 4, in the form

�1234
�4� = ��12�34 + �14�32��A + �13�24�B. �73�

Substituting Eq. �73� in Eq. �71�, one finds the following
system of linear equations:
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�����A = Id
�3����g��1 − F����N + 4��A + 2�B�

����B = Id
�3����g��1 − F���2�A + 2�B� .

�74�

The matrix

�N + 4 2

2 2
� �75�

has the eigenvalues �which are both positives for N�−2�

�± =
N + 6 ± �N2 + 4N + 20

2
, �76�

corresponding to the following eigenvectors:

��A
±

�B
± � = ��±

2
− 1

1
� . �77�

Using these eigenvectors, one can write the general solution
of Eq. �74� as

��A

�B
� = a�

+��A
+

�B
+ � + a�

−��A
−

�B
− � , �78�

where a�
± verify

���a�
± = Id

�3����g��1 − F���±a�
± =

�±

N + 8
����ln g��a�

±.

�79�

We used Eq. �43� to obtain this result. The equation above
can be integrated analytically, to give

a�
± = a�p1

± � g�

g�p1

��±/�N+8�

. �80�

By imposing continuity between the two regions �a� and �b�
at �=�p1, we obtain then the solution in the region �p1
����p2:

�1234
�4� =

g�p1

�− − �+
��13�24���− − 4�� g�

g�p1

��+/�N+8�

− ��+ − 4�

�� g�

g�p1

��−/�N+8���� + ��12�34 + �14�23�

��− �+� g�

g�p1

��+/�N+8�

+ �−� g�

g�p1

��−/�N+8��� . �81�

�c� �p2���� � p1+ p2�. In this region, Eq. �70� becomes

���1234
�4� =

1

N + 8
�12ii

�4� �34 + �1234
�4� + �1243

�4� ����ln g�� . �82�

We need now the general tensor decomposition:

�1234
�4� = �12�34�A + ��13�24 + �14�32��B + ��13�24 − �14�32��C.

�83�

By substituting in Eq. �82� we get

����A =
1

N + 8
��N + 2��A + 2�B����ln g��

���B =
2

N + 8
�B���ln g��

���C = 0.

�84�

The antisymmetric sector ��C� is decoupled. In order to get
the solution in the symmetric sector ��A ,�B�, we diagonalize
the matrix:

�N + 2 2

0 2
� , �85�

and get the eigenvalues

�+ = N + 2, �− = 2 �86�

corresponding to the eigenvectors

�1

0
�, � 1

− N/2
� . �87�

One can then write the general solution of the symmetric part
of Eq. �84� as

��A

�B
� = b�

+�1

0
� + b�

−� 1

− N/2
� , �88�

where b�
± verifies

���b�
± = Id

�3����g��1 − F���±b�
±, �89�

which, using Eq. �43�, leads to

b�
± = b�p2

± � g�

g�p2

��±/�N+8�

. �90�

Imposing continuity between the regions �b� and �c�, at �
=�p2, one obtains finally

�1234
�4� = �12�34�b�p2

+ � g�

g�p2

��+/�N+8�

+ b�p2

− � g�

g�p2

��−/�N+8��
− ��13�24 + �14�32�

N

2
b�p2

− � g�

g�p2

��−/�N+8�

+ ��13�24 − �14�32���p2

C , �91�

where

b�p2

+ =
g�p1

�− − �+
��− �+ +

1

N
��− − �+ − 4���g�p2

g�p1

��+/�N+8�

− �− �− +
1

N
��+ − �− − 4���g�p2

g�p1

��−/�N+8�� ,

b�p2

− = −
1

N

g�p1

�− − �+
���− − �+ − 4��g�p2

g�p1

��+/�N+8�

− ��+ − �− − 4��g�p2

g�p1

��−/�N+8�� , �92�
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��p2

C =
g�p1

�− − �+

N + 2

2 ��g�p2

g�p1

��+/�N+8�

− �g�p2

g�p1

��−/�N+8�� .

�93�

�d� � � p1+ p2 � ��. In this region the flow simply stops. The
result is then

�1234
�4� ��;p1,p2,0,− p1 − p2�

= �1234
�4� �� = ��p1 + p2�;p1,p2,0,− p1 − p2� . �94�

C. Calculation of �12ii
„4…

„p ,−p ,q ,−q…

At this point, we could solve Eq. �68� for any combination
of momenta, given the fact that once the function is known
for the particular combination that has been treated in the
last section, all the information appearing in the right-hand
side of the equation is known. To give an example we shall
consider in this subsection the explicit calculation of
�12ii

�4� �� ; p ,−p ,q ,−q�, when q��. The result will be used in
the next section as the initial Ansatz for ��4� in the calcula-
tion of the LO expression of the self-energy. Note that since
the favored values of � are smaller than 1, �q��.

For the considered values of momenta, Eq. �68� becomes

����12ll
�4� �p,− p,q,− q�

= Id
�3�����1 − F����12ij

�4� �p,− p,0,0��llij
�4��q,− q,0,0��

+ ��1 − �2 �p + q�2

�2 ��1lij
�4� �p,q,0,− p − q�

��2lij
�4� �− p,− q,0,p + q�� + ��1 − �2 �p − q�2

�2 �
��1lij

�4� �p,− q,0,− p + q��2lij
�4� �− p,q,0,p − q�� . �95�

The rhs of this equation includes the expressions of ��4� that
have been determined in the previous subsection. It is useful
to separate the contribution to ��4��� ; p ,−p ,q ,−q� coming
from the first line from those coming from the second and
third lines of Eq. �95� above. The first contribution corre-
sponds to the s channel, the second corresponds to the sum
of the t and u channels �see Fig. 3�.

�i� s channel. In the s channel, there are two kinematical
regions:

�a� �p��. In this case, we have

����12ll
�s� �p,− p,q,− q� = Id

�3�����1 − F��g�
2�N + 2�2�12,

�96�

whose solution is �see, Eq. �43��

�12ll
�s� �p,− p,q,− q� =

�N + 2�2

N + 8
g��12. �97�

�b� �p��. In this region, we have

����12ll
�s� �p,− p,q,− q�

= Id
�3�����1 − F���N + 2�2�12g�g�p� g�

g�p
��N+2�/�N+8�

,

�98�

whose solution is

�12ll
�s� �p,− p,q,− q�

= g�p�12�N + 2��N + 2

N + 8
+ � g�

g�p
��N+2�/�N+8�

− 1� ,

�99�

where we used continuity between the two regions in order
to fix the integration constant.

�ii� t and u channels. Let us now turn to the contribution
of the t and u channels in Eq. �95�. Since the two channels
only differ in the sign of q, we consider only the t channel,
with kinematical variable �p+q�. There are two situations to
analyze.

�A� �p+q � � �p�. In this case, there are two kinematical
regions:

�a� � � p+q � ��. In this region the contribution in Eq. �68�
reads

����12ll
�t� �p,− p,q,− q� = Id

�3�����1 − F��g�
23�N + 2��12.

�100�

The solution is easily obtained by using Eq. �43� in order to
eliminate F�. One gets

�12ll
�t� �p,− p,q,− q� = 3

N + 2

N + 8
g��12. �101�

�b� � � p+q � ��. In this region the flow stops and we obtain

�12ll
�t� �p,− p,q,− q� = 3

N + 2

N + 8
g��p+q��12. �102�

�B� �p+q � � p. In this case there are three kinematical
regions:

�a� �p��. This region is identical to �Aa� above. The
solution is given by Eq. �101�. �b� �p���� � p+q�. Here
the contribution to Eq. �68� becomes
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����12ll
�t� �p,− p,q,− q� = Id

�3�����1 − F���12
N + 2

N2 + 4N + 20
g�p

2 ���3

2
N2 + 6N + 30 +

N + 14

2
�N2 + 4N + 20�� g�

g�p
�2�+/�N+8���

+ �3

2
N2 + 6N + 30 −

N + 14

2
�N2 + 4N + 20�� g�

g�p
�2�−/�N+8�� �103�

and has as the solution

�12ll
�t� �p,− p,q,− q� = 3�12

N + 2

N + 8
g�p + �12

N + 2

N2 + 4N + 20
g�p

� � �3/2�N2 + 6N + 30 + �N + 14�/2�N2 + 4N + 20

2�+ − N − 8
�� g�

g�p
��2�+−N−8�/�N+8�

− 1��
+

�3/2�N2 + 6N + 30 − �N + 14�/2�N2 + 4N + 20

2�− − N − 8
��� g�

g�p
��2�−−N−8�/�N+8�

− 1�� , �104�

where, again, we have imposed continuity. �c� ��� � p+q�.
In this regime the flow stops. The solution is found by fixing
�=� � p+q� in Eq. �104�.

IV. LEADING ORDER RESULTS

The self-energy �� ; p� is obtained by integrating Eq. �9�
from the microscopic scale � to the given value of the pa-
rameter �:

�12��;p� = �12r −
1

2
�

�

�

d��� ddq

�2��dG2���;q����R���q�

��12ii
�4� ���;p,− p,q,− q� , �105�

where we have used the boundary condition ��=� ; p�=r,
with r the bare mass. We shall be working in the critical
regime, i.e., for a vanishing physical mass. Thus r is sup-
posed to be adjusted so that ��=0; p=0�=0, that is,

�12r = −
1

2
�

0

�

d��� ddq

�2��dG2���;q����R���q�

��12ii
�4� ���;0,0,q,− q� . �106�

One may use this equation to eliminate the explicit r depen-
dence in Eq. �105�

�12��;p� = −
1

2
�

0

�

d��� ddq

�2��dG2���;q����R���q�

��12ii
�4� ���;p,− p,q,− q�

+
1

2
�

0

�

d��� ddq

�2��dG2���;q����R���q�

���12ii
�4� ���;p,− p,q,− q� − �12ii

�4� ���;0,0,q,− q�� ,

�107�

from which one immediately deduces the following expres-
sion for the physical self-energy �p�
��=0; p�:

�12�p� =
1

2
�

0

�

d��� ddq

�2��dG2���;q����R���q�

���12ii
�4� ���;p,− p,q,− q� − �12ii

�4� ���;0,0,q,− q�� .

�108�

This expression automatically satisfies the criticality condi-
tion at �p=0�=0. But, of course, it holds provided Eq.
�106� holds.

In the following subsections we study the self-energy at
leading order �LO� of our approximation scheme. The lead-
ing order consists in using in the rhs of Eq. �107� the initial
Ansatz for �12ii

�4� ��� ; p ,−p ,q ,−q� that has been derived in
the previous section. Note that for this initial Ansatz,
�12ii

�4� ��� ;0 ,0 ,q ,−q� is given by the LPA� expression, so that
Eq. �106� is satisfied at LO with the value of r obtained by
solving the LPA� �Eq. �106� for r is then equivalent to Eq.
�40�, a self-consistent equation for the running mass m�

where the value of r is adjusted so that, for a given value of
the bare coupling, m�=0��.

A. Self-energy at LO

As we just mentioned, in order to calculate LO, we use,
as input in the rhs of Eq. �107�, the initial Ansatz for both the
propagator and the four-point function. The initial Ansatz for
the propagator is needed only for q�� and is taken to be the
LPA� propagator �see Eq. �24��:

GLPA�
−1 ��;q � �� = Z�q2 + m�

2 + R��q� = Z��2�1 + m̂�
2� .

�109�

The initial Ansatz for ��4� was determined in Sec. III C. It
depends only on �, p2, q2, and the angle � between p and q.
By performing the integrations over all angles other than �,
one gets
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�12LO��;p� = −
d − 1

4�
Kd−1�

0

�

d��
1

Z����2�1 + m̂��
2 �2�

0

��
qd−1dq�2 + ���� q2

��2 − 1���
0

�

d� sin ��1 − cos2 ���d−3�/2

��12ii
�4� ���;p,− p,q,− q� +

d − 1

4�
Kd−1�

0

�

d��
1

Z����2�1 + m̂��
2 �2�

0

��
qd−1dq�2 + ���� q2

��2 − 1���
0

�

d� sin �

��1 − cos2 ���d−3�/2��12ii
�4� ���;p,− p,q,− q� − �12ii

�4� ���;0,0,q,− q�� . �110�

The physical self-energy at LO is then given by

�12LO�p� =
d − 1

4�
Kd−1�

0

�

d�
1

Z��3�1 + m̂�
2�2�

0

�

qd−1dq�2 + ��� q2

�2 − 1���
0

�

d� sin ��1 − cos2 ���d−3�/2

���12ii
�4� ��;p,− p,q,− q� − �12ii

�4� ��;0,0,q,− q�� . �111�

This expression has interesting scaling properties that we
shall present for the case d=3 �most of the discussion ex-
tends to arbitrary dimensions, with the replacement of u by
u1/�4−d��.

First, a simple analysis shows that LO�p� in Eq. �111� can

be written in the form LO�p�=u2̂�p /u� where ̂ is a di-
mensionless function. To see that, we note that, as seen in
Sec. III C, �12ii

�4� �� ; p ,−p ,q ,−q� is proportional to the LPA�
function gl where l=�, �p, or � � p+q�. Now, as discussed
in Sec. II C, in d=3, the dimensionless function ĝl� ld−4gl
only depends on l /u if u /� is small enough. It follows that

�12ii
�4� �� ; p ,−p ,q ,−q�=u�̂12ii

�4� �� /u ; p /u ,−p /u ,q /u ,−q /u�
where �̂12ii

�4� is a dimensionless function. The result for LO
follows after noticing that the remaining dependence in �
sits in the upper limit of integration: since the integral con-
verges, that dependence becomes negligible when � /u�1.

A similar �but approximate� scaling holds for the depen-
dence on the parameter �. To see that, let us set q=0 in the
four-point functions in Eq. �111� �similarly to what is done
for the approximation A1 of Sec. III A�. Then, by using the
explicit expressions of ��4��� ; p ,−p ,0 ,0� presented in Sec.
III C, one can verify from Eq. �111� that LO�p� is a function

of �p only, i.e., LO�p�= ̂��p�. In fact, we expect this prop-
erty to be best satisfied for low values of �: indeed, since the
second line of Eq. �111� is nonvanishing only for q��
��p �see Sec. III C�, the smaller the value of � the smaller
the domain of variation of q, and the better is the approxi-
mation q=0. The approximate scaling on � is clearly visible
in Fig. 12.

Turning now to the momentum behavior of LO, we note
that both the low and high momentum regimes are correctly
reproduced, independently of the value of �. At large mo-
menta, we recover the logarithmic behavior predicted by sec-
ond order perturbation theory, namely �p�� ln�p /u�. How-
ever, the numerical coefficient in front of the logarithm
�which does not depend on �� comes about 7% higher than
the correct one ��N+2�u2 / �288�2��.

In the low momentum region, we obtain the expected
power law behavior p2+LO�p�
 p2−�*

. It turns out that the
exponent �* is the value of the function �� at the IR fixed

point of the LPA�. This is verified numerically with a nu-
merical uncertainty of 0.001, independently of the value of
the parameter �. But this is also an exact result at the present
level of approximation. To prove this, let us first note that, in
Eq. �111�, the difference of the two functions ��4� in the
second line is nonvanishing only when �� p. Indeed, as can
be easily seen from their explicit expressions given in Sec.
III C, the two functions ��4� coincide when ���p and �
�� � p±q�; therefore there are two different situations where
the contributions are not zero. The first situation is ���p.
This implies that �� p �remember that ��1�. The second
situation is more subtle. If we have ��� � p±q�, one has
�p � � �p±q �−�q � � �p±q �−����1/�−1�, where we used the
triangular inequality and the fact that q��. In both situa-
tions we found that, as announced, the integrand in Eq. �111�
is nonvanishing only when ���p, where � is a number of
order 1. It follows that if p is in the scaling region, i.e., if
p�pc �with pc��c�, so are all the momentum variables in
the integrand of Eq. �111�, i.e., p, q, �p±q�, and �. Then all
the functions appearing in the rhs of Eq. �111� are in the

FIG. 12. �p� �in units of �2� as a function of �p /u for N=2
and various values of �: �=0.6 �circles�, �=0.7 �square�, �=0.75
�diamond�, �=0.8 �triangle up�, and �=0.9 �triangle left�. The
curves exhibit the � scaling explained in the text.
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scaling regime, and their dependence on � is controlled by
the IR fixed point:

m̂�
2 � m̂*2, ĝ� � ĝ*, �� � �*, Z� 
 �−�*

, �112�

where we used Eq. �22�. Then, from Eq. �30�, we get

g� 
 �4−d−2�*
. �113�

At this point we perform the change of variables �= px and
q= py in order to make explicit the p dependence of �p� in

Eq. �111�: we collect a factor p�*
from Z�

−1 and an overall
factor pd−2 due to the terms d�, dq, �−3, and qd−1 appearing
in the integrand. As for the p dependence of the four-point
functions, one uses the fact that ��4��� ; p ,−p ,q ,−q� is pro-
portional to glf�g� /gl� where l is either �p or � � p±q�, and
f is a dimensionless function �see Sec. III C�. After the
change of variables, using Eq. �113�, ��4��� ; p ,−p ,q ,−q�
−��4��� ; p ,−p ,0 ,0� can thus be written as p4−d−2�*

times a
function of x and y. Altogether, and using the fact that, as

shown above, LO�p�=u2̃�p /u�, one gets

LO�p� = Cu�*
p2−�*

, �114�

where the proportionality coefficient C is the remaining di-
mensionless and finite integral over x, y �and ��, which only
depends on the parameter �.

The anomalous dimension obtained from the present cal-
culation is then identical to that calculated in the LPA� �see
Eqs. �21� and �22��. Its value, �*�0.044 is to be compared
with the best estimates available in the literature, e.g., �
=0.0354±0.0025 �36�. A simple proof that the dependence of
the field renormalization factor on the scale � determines in
general the momentum dependence of the self-energy �thus
defining the anomalous dimension� is presented in Appendix
A. However, there is no guarantee that this property should
hold in any approximation �for instance, it does not hold in
the derivative expansion�. It is therefore gratifying to see that
the power law behavior expected for the momentum depen-
dence of the self-energy in the scaling regime comes out
naturally in the LO of the present approximation scheme.

B. Calculation of �Š�2
‹

As a further test of the quality of the leading order result
for the self-energy, we have used LO to calculate the shift
�Tc of the transition temperature of a dilute, weakly inter-
acting, Bose gas. It has been shown that �Tc is linear in an1/3

�14�, where a is the scattering length and n the particle den-
sity:

�Tc

Tc
0 = can1/3. �115�

Here Tc
0 is the condensation temperature of the ideal gas and

�Tc=Tc−Tc
0 with Tc the transition temperature of the inter-

acting system. As shown in Ref. �14�, the coefficient c can be
related to the change ���2	 in the magnitude of the fluctua-
tions of the field described by the action �1�,

c = −
256�3

���3/2��4/3

���i
2	

Nu
, �116�

in the limit u→0 �and for N=2�.
The best numerical estimates for ���2	, and hence for c,

are those which have been obtained using the lattice tech-
nique by two groups, with the results: c=1.32±0.02 �18� and
c=1.29±0.05 �19�. The availability of these results has
turned the calculation of c into a testing ground for other
nonperturbative methods: expansion in 1/N �17,37�, opti-
mized perturbation theory �38,39�, resummed perturbative
calculations to high loop orders �40�. Note that while the
latter methods yield critical exponents with several signifi-
cant digits, they predict c with only a 10% accuracy. This
illustrates the difficulty of getting an accurate determination
of c using �semi�analytical techniques.

To understand better the origin of the difficulty, let us
write ���i

2	 as the following integral:

���i
2	

N
=� d3p

�2��3� 1

p2 + �p�
−

1

p2�
= −

1

2�2 � dp

p
�p −

p3

p2 + �p�� , �117�

where �p� is the self-energy at criticality, i.e., �0�=0. In
Eq. �117�, the term within the square brakets, to be referred
below as the integrand, is, to a very good approximation,
equal to �p� / p �one finds numerically that this is a good
approximation as soon as p /u	10−5�. As we shall see
shortly, �p� / p is peaked in the region of intermediate mo-
menta between the critical region and the high momentum
perturbative region �see Fig. 13�. The difficulty in getting a
precise evaluation of the integral �117� is that it requires an
accurate determination of �p� in a large region of momenta
including the crossover region between two different physi-

FIG. 13. The integrand of Eq. �117� �divided by �, and in units
of �� as a function of �p /u for various values of �: �=0.6 �circles�,
�=0.7 �square�, �=0.75 �diamond�, �=0.8 �triangle up�, and �
=0.9 �triangle left� �points shown are those needed to the numerical
calculation of the integral in Eq. �117��, for N=2. The curves ex-
hibit the approximate � scaling explained in the text.

NONPERTURBATIVE RENORMALIZATION GROUP… . I PHYSICAL REVIEW E 74, 051116 �2006�

051116-17



cal regimes �15,17�. In that sense, the calculation of c can be
viewed as a very stringent test of the approximation scheme.

A plot of the integrand of Eq. �117� �divided by �� is
shown in Fig. 13, for various values of �. As announced, the
momentum at which the integrand reaches its maximum lies
in the intermediate momentum region: in Fig. 13 this is
�p /u�0.2. The approximate scaling behavior that can be
observed in Fig. 13 follows from the property of the self-
energy discussed in Sec. IV A: as we have seen there,

LO�p ;��� ̄��p�, so that, setting p̄=�p

���i
2	

N
� − �� d3p̄

�2��3

̄�p̄�
p̄4 . �118�

Figure 14 shows the value of the coefficient c as a func-
tion of �. The �almost� linear behavior of c as a function of
� follows directly from Eq. �118�. Deviations from the linear
behavior can be seen for �	0.7: as we have discussed in the
previous subsection, for these large values of �, the approxi-

mation LO�p ;��� ̄��p� becomes less accurate. As we can
see, when �=0.75±0.15, one gets c=1.3±0.3. This result
confirms the quality of the leading order expression of the
self-energy for all values of the momentum.

We have also calculated LO for different values of N, and
compared the corresponding results with those obtained by
different means and available in the literature. The quality of
our numerical estimates remains of the same level as long as
N�50, but for larger values of N, the calculations lose ac-
curacy. The range of acceptable values of � �see Sec. III A�
remains the interval �0.6–0.9, and the resulting error bars
on the predicted value of c stay of the order of 23–29 %.
One gets, for N=1, c=1.06±0.27; for N=3, c=1.47±0.39;
for N=4, c=1.66±0.44; for N=10, c=2.33±0.60; for N
=40, c=2.97±0.63. These numbers are to be compared with
those obtained using other methods; lattice calculation �41�
or re-summed perturbation theory carried up to seven-loop
order �40� give for N=1, c=1.09±0.09 �lattice� and c
=1.07±0.10 �seven loops�; for N=3, c=1.43±0.11 �seven
loops�; for N=4, c=1.60±0.10 �lattice�, and c=1.54±0.11

�seven loops�. The exact result for N→� is also known �17�:
c=2.33. One observes that, for all values of N, the best ac-
cepted results always lie within the error bars of our LO
prediction �as obtained from the criteria that were used to fix
the range of acceptable values of � in Sec. III A�; they ap-
proach the lower limit of the band when N grows �the origin
of the latter property can in fact be understood by analyzing
the steps leading to Eq. �62��.

At this point, we would like to mention another calcula-
tion of �Tc using the nonperturbative renormalization group
�42�. A value c=1.23 has been obtained there for N=2,
which looks in good agreement with the lattice result. How-
ever, for reasons that will be detailed in Paper II, the approxi-
mation scheme used in Ref. �42� makes it very hard to gauge
the quality of this prediction.

Before finishing this section we present a consistency
check of the approximation A1 made in Sec. III A to con-
struct the initial Ansatz for the four-point function ��4�. This
approximation consists in neglecting the internal momentum
dependence in the four-point vertices appearing in the rhs of
the flow equation. This was done in order to obtain Eq. �66�
for ��4�. Here we shall make this approximation A1 in the
equation for the self-energy, Eq. �111�. Figure 15 compares
the self-energies obtained form Eq. �111� with and without
approximation A1. One can see that the approximate result
differs very little from the exact one. It turns out that both the
perturbative regime and the exponent in the scaling regime
are almost unchanged, most of the difference being concen-
trated in the intermediate momentum region. This is verified
by calculating the coefficient c with and without the approxi-
mation A1: The value obtained with A1 is about 10% smaller
than that obtained with LO. This illustrates the large sensi-
tivity of the coefficient c to variations of the self-energy in
the crossover region.

V. CONCLUSIONS

The calculation of the self-energy of the O�N� model
demonstrates that the approximation scheme that we have

0 0.2 0.4 0.6 0.8 1
 α

0

0.5

1

1.5

2
c

FIG. 14. The coefficient c calculated in LO as a function of the
parameter �, for N=2.

FIG. 15. Calculation of the self-energy �in units of �2, for N
=2� used to test approximation A1, as explained in the text: the
complete expression of �p� �triangles� and the approximate one
�squares�.
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presented fulfills its goal, that is, it offers a simple way to
calculate the full momentum dependence of the n-point func-
tions. The accuracy achieved in the leading order is already
satisfactory, over the full momentum range, as shown by the
various tests that we performed.

A crucial ingredient in the calculation is the construction
of the initial Ansatz for the four-point function. That in itself
is an important part of the present paper. This initial Ansatz is
obtained by solving an approximate flow equation derived
using well motivated approximations. The resulting four-
point function, albeit approximate, exhibits a realistic mo-
mentum dependence, also in the entire momentum range. In
particular, the power law behavior expected in the scaling
regime is reproduced.

The approximations that we have introduced to construct
the initial Ansatz for the four-point function involve a param-
eter � that needs to be adjusted in such a way that approxi-
mate expressions match best the exact expressions that they
are supposed to represent. This introduces a theoretical un-
certainty, which, in the case of the calculation of the shift of
the Bose-Einstein transition temperature that we have pre-
sented, is of the order of 25%.

In a forthcoming paper �20�, we shall present results of a
next-to-leading order analysis for the self-energy. To do so
we shall need to improve the accuracy of the four-point func-
tion, as compared to the initial Ansatz presented in this paper.
That is, we shall calculate the four-point function at leading
order, i.e., construct an initial Ansatz for the six-point func-
tion. The next-to-leading order calculation of the self-energy
will allow us to test fully the approximation scheme, and
detect some of its weaknesses. As we shall see, the calcula-
tion of c will be greatly improved, in particular the depen-
dence on the parameter � will be eliminated, and results
obtained in quite good agreement with lattice data.
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APPENDIX A: THE FUNCTION �� AND THE
ANOMALOUS DIMENSION

It is usually accepted �6� that the � dependence of the
field renormalization factor Z� �for values of � where the
couplings have approached the infrared fixed point� deter-
mines the anomalous dimension of the field. However, it is
not a priori obvious that the momentum dependence of cor-
relation functions obtained after some approximation follows
automatically the corresponding scaling law: this is not so,
for instance, in the derivative expansion. We find it therefore
useful to present in this appendix a simple derivation of this
property. The arguments in the proof given here help to
clarify the conditions under which this property will be sat-
isfied in an approximation. This also completes the deriva-
tion presented in Sec. IV A, that the anomalous dimension
calculated from the momentum dependence of the four-point
function obtained as solution of the approximate equation

derived in Sec. III is indeed equal to that deduced from the �
dependence of Z� calculated in the LPA�.

Let us consider the two-point function ��2��p ,� ,u� for
p ,���c�u1/�4−d� in order to be in the scaling regime. Then,
scale invariance implies that

��2��p�,�,u�
��2��p,�,u�

= f̃� p�

p
,
p

�
� , �A1�

where f̃ is a dimensionless function of its arguments. It fol-
lows that

��2��p,�,u� = ��2��0,�,u�f� p

�
� , �A2�

where we have set f�p /��
 f̃�0, p /��. Note that the depen-
dence on the microscopic parameter u is entirely contained in
the factor ��2��0,� ,u� ���2��0,� ,u� is well defined thanks to
the IR regulator�, and the momentum dependence factors out
in the scaling function f�p /��. This function has a Taylor
expansion at small p /�, and f�0�=1. At this point we may
use scale invariance again, together with dimensional analy-
sis, in order to show that in the regime ���c:

��2��0,�,u� 
 �2� �

u1/�4−d��−�

, �A3�

where � is constant. It then follows that for the function
��2��p ,� ,u� in Eq. �A2� to have a limit when �→0, we must
have, for large values of p /�,

f� p

�
� 
 � p

�
�2−�

�A4�

where � is the same constant as in Eq. �A3�. Thus

��2��p,�,u� 
 p2 � � p

u1/�4−d��−�

. �A5�

We can write

��2��p,�,u� − ��2��0,�,u� = Z�p2 + O�p4� �A6�

and from Eq. �A2�

��2��p,�,u� − ��2��0,�,u� = �f�p/�� − 1���2��0,�,u� .

�A7�

In the regime �→0, so that Eq. �A3� is valid, and p�� so
that f�p /���1+C �p /��2, with C a numerical constant, one
can then use Eqs. �A3� and �A7� to deduce the behavior of
Z�:

Z� = C��

u
�−�

. �A8�

APPENDIX B: THE FUNCTION J3
„3…
„� ;p…

Using the LPA� propagator �see Eq. �109�� and the regu-
lator of Eq. �20�, making the change of variables p̄= p /�, v
=q /�, and cos �= p ·q / pq, and performing the integrals over
the remaining angular variables, one can write Eq. �55� as
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Jd
�3���;p� =

�d−4

Z�
2�2��d

2��d−1�/2

���d − 1�/2�
1

�1 + m̂�
2�2�

0

1

dvvd−1�
0

�

d� sin ��1 − cos2 ���d−3�/2

�
�2 − � + �v2�

��1 − v2 − p̄2 + 2vp̄ cos �� + �v2 + p̄2 − 2vp̄ cos ����v2 + p̄2 − 2vp̄ cos � − 1� + m̂�
2 . �B1�

This expression is valid for arbitrary d, but we shall evaluate it only for d=3. In order to take care of the � functions it is
convenient to separate the calculation in two different regions: 2� p̄ and p̄�2. In each case, one performs the � integral first,
and then the integral over v. One gets

�a� 2� p̄:

J3
�3���;p� =

1

�Z�
2�2��2

1

�1 + m̂�
2�2�2 +

�

2
�−

5

3
+ p̄2 − 3m̂�

2�
+

1

2p̄
�− 1 +

�

4
+ �p̄ + �− m̂�

2�2�1 −
�

2
+

�

4
�p̄ + �− m̂�

2�2��ln� p̄ − 1 + �− m̂�
2

p̄ + 1 + �− m̂�
2�

+
1

2p̄
�− 1 +

�

4
+ �p̄ − �− m̂�

2�2�1 −
�

2
+

�

4
�p̄ − �− m̂�

2�2��ln� p̄ − 1 − �− m̂�
2

p̄ + 1 − �− m̂�
2��

=
1

�Z�
2�2��2

1

�1 + m̂�
2�2� 4

p̄2�1

3
−

�

15
� +

4

p̄4� 1

15
−

�

105
−

m̂�
2

3
+

�m̂�
2

15
� + O�1/�p̄6��� . �B2�

�b� p̄�2:

J3
�3���;p� =

�−1

Z�
2�2��2�1 + m̂�

2�2�− 1 +
�

4
+

�m̂�
2

4
+ p̄�3

2
−

�

8
−

7�m̂�
2

8
� −

3�

4
p̄2

+
25�

48
p̄3 +

1

1 + m̂�
2�4

3
−

4�

15
− p̄ +

�

3
p̄2 + � 1

12
−

�

6
�p̄3 +

�

120
p̄5�

+
1

2p̄
�1 −

�

4
− �p̄ + �− m̂�

2�2�1 −
�

2
+

�

4
�p̄ + �− m̂�

2�2��ln� p̄ + 1 + �− m̂�
2

1 + �− m̂�
2 �

+
1

2p̄
�1 −

�

4
− �p̄ − �− m̂�

2�2�1 −
�

2
+

�

4
�p̄ − �− m̂�

2�2��ln� p̄ + 1 − �− m̂�
2

1 − �− m̂�
2 ��

=
�−1

Z�
2�2��2�1 + m̂�

2�2� 4

3�1 + m̂�
2�
�1 −

�

5
� −

2

3�1 + m̂�
2�2 p̄2

+
2 + � − 2m̂�

2 + �m̂�
2

6�1 + m̂�
2�3 p̄3 −

2�1 + � − 5m̂�
2 + �m̂�

2�
15�1 + m̂�

2�4 p̄4 + O�p̄5�� . �B3�
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